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End corrections for open-ended cylindrical tubes are determined theoretically and
experimentally. For the zero and low frequencies, the wave equation is solved numerically by
using a "nite di!erence method. For higher frequencies the complex radiation impedance is
measured and for circular #anges, calculated with the boundary element method. For low
frequencies the BEM links up with the FDM and for higher frequencies "ts with
experimental results. Various #anges found in particular in musical instruments are
considered: circular #anges of various sizes, spherical and cylindrical #anges, square #anges,
the normalised #ange (used for loudspeaker testing), short #aring horns and a disk at
a certain distance above the open end. Analytical "t formulas are proposed for each case.
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1. INTRODUCTION

The radiation impedance of an open-ended tube has a small but "nite value. Its imaginary
part acts as an end correction to the geometrical tube length from which the resonance
frequency of the tube is calculated. Accurate knowledge of the value of this end correction is
important in the case of wind musical instruments, since di!erences of 0)1% in frequency are
musically signi"cant. The magnitude of this end correction depends on details of the
geometry of the open end. Exact theoretical values are available only for two extreme
situations namely for a cylinder with a circular #ange of in"nite and of zero dimensions
[1}3]. The length correction for low frequencies in these two cases is 0)8216a and 0)6133a,
respectively, where a is the inner radius of the cylinder. As these limit cases do not
correspond to realistic situations on wind instruments, the knowledge of the values for other
sizes and shapes is of particular interest. For a circular #ange of "nite dimensions the value
will most likely be somewhere in between those for the two extreme cases, but this statement
is not su$ciently accurate. For other geometries the value is di$cult to estimate: it might be
0022-460X/01/280505#30 $35.00/0 ( 2001 Academic Press
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outside this range, for example for a disk at a small distance from the open end (key above
a hole) it is expected to be larger than the in"nite-#ange value.

Sound levels in wind instruments can be high and a mean #ow is superimposed on the
acoustic one. This can cause non-linear e!ects, such as shock waves [4], vortex formation
[5] and large losses due to a pressure drop at a diameter change [6]. Although these e!ects
can be important in practical situations, they will not be considered in the present study
which is restricted to small-amplitude linear acoustics.

The need for more accurate values has prompted investigations, reported in the literature.
Benade and Murday [7] and Peters et al. [5] experimentally investigated cylindrical #anges
of various diameters. Ando [8] and later, Bernard and Denardo [9] analytically
investigated circular #anges in the range of the ratio of tube and #ange radius, a/b, from 0)7
to 1. For other geometries commonly found on wind musical instruments such as a disk at
a certain distance of an open end, and holes drilled in a cylindrical wall (recorder), results
have been reported [7, 10}12] and summarized by Nederveen [12].

The aim of this paper is to determine the end corrections for a number of geometries
found in woodwinds (see Figure 1) with a precision su$cient for calculation of the
resonance frequency within the above-mentioned limit. Approaches considered were
analytical, numerical (the "nite di!erence method*FDM and the boundary element
method*BEM) and experimental. The analytical method seems promising in the case of
the circular #ange on a cylindrical tube. This would mean extending the approach of Ando
[8, 9], i.e., using the Wiener}Hopf technique. However, when taking more terms of the
expansion into account the number of functions to be determined increases rapidly. The
number of terms necessary is probably larger, considering the fact that the last term in the
calculations of Ando [8, 9] is still 20% of the total length correction. This route was
abandoned. Instead, numerical approaches and experiments were chosen, for the circular
#anges as well as for the other geometries.

For the experiments an accurately calibrated impedance sensor was employed. Two
di!erent methods were used. One measures the complex impedance of a short tube and
gives the radiation impedance as a function of frequency (section 3.3.1). The other measures
the resonance frequencies of the tube before and after variation of the end geometry and
gives the radiation impedance at one frequency (section 3.3.2).

Figure 1 shows the various geometries investigated. Thin and thick circular #anges
(Figure 1(a) and 1(b), respectively), were studied with BEM, FDM and experiments: real and
imaginary parts versus frequency were determined (section 4). The case of the normalized
#ange (Figure 1(d)), used for loudspeaker characterization (section 5.2), as well as the
spherical and cylindrical #anges (Figure 1(e) and 1(f), respectively, section 6) and short
#aring horns (Figure 1(g) section 7), were investigated with both FDM and experiments
based on impedance measurements. The cases of solid and perforated disks hanging above
holes (Figures 1(h) and 1(i)) were investigated with both FDM and experiments based on
resonance frequency measurements (section 8). The case of a square #ange on a square tube
(Figure 1(c)) has been investigated only with FDM (section 5.1). The nomenclature is given
in Appendix A.

2. GENERALITIES

2.1. DEFINITIONS

2.1.1. Re-ection coe.cient

For a plane wave propagating in the positive direction in a cylindrical straight tube the
re#ection coe$cient R

x
at a given abscissa is the ratio of the re#ected wave p

~
and the



Figure 1. Shapes investigated: (a) thin circular #ange; (b) thick circular #ange or thick tube; (c) thick square tube;
(d) the normalized #ange; (e) spherical #ange; (f) cylindrical #ange; (g) short catenoidal horn; (h) non-perforated
disk; (i) perforated disk.
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incident wave p
`

at this abscissa:

R
x
"p

~
/p

`
(1)

At the end of an open tube the wave front is no longer plane and this de"nition cannot be
applied. Instead, the re#ection coe$cient R

0
at the end of the tube (x"0) is de"ned from

the re#ection coe$cient R
L

at a distance ¸, inside the tube (x"!¸), from the open end so
that the front wave is plane

R
0
"R

L
e2jk¸, (2)
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where k is the complex wave number. Note that, for an open end, this re#ection coe$cient is
negative and that the ejut convention is used for the time dependence.

In practice, to ensure a plane wave front under the "rst cut-o! frequency, the distance
¸ needs to be only larger than 2 or 3 times the diameter of the tube. The "rst cut-o!
frequency being given by ka"1)84, with k the wave number and a the radius of the tube,
this will be valid for ka(1 or even (1)5.

For su$ciently large tubes with rigid and smooth walls the wave number k is given by

k"(u/c)#(1!j) a, (3)

where c is the speed of sound, u"2nf with f the frequency, j is the square root of minus
one and a is given by

a"
1

a S
u
2c

(Jl
v
#(c!1)Jl

h
), (4)

where l
v
and l

h
are the characteristic lengths for viscous and thermal e!ects respectively. c is

the ratio of the speci"c heats of air at constant pressure and constant volume (see for
example, references [13, 14]).

For air CausseH et al. [15] proposed the following formula for a:

a"2)87]10~5 (1#0)0016t) J f /a (5)

with t the temperature in 3 Celsius, a the radius in m and f the frequency in Hz. This
formula has been veri"ed experimentally to be accurate within $3% [16].

2.1.2. Radiation impedance

The impedance Z is related to the re#ection coe$cient R according to the relation

Z"Z
c
(1#R)/(1!R), (6)

where Z
c

is the characteristic impedance of the tube. For a large tube the in#uence of
damping on Z

c
can be neglected. Z

c
is approximately given by

Z
c
+oc/S, (7)

where o is the density of air, c the speed of sound and S the cross-section of the tube. In
practice, the impedance at the tube end, the radiation impedance Z

r
cannot be calculated or

measured at the end of the tube. It must be evaluated indirectly from the impedance Z
L

at
an abscissa x"!¸, i.e., at a distance ¸ from the open end. This is, upon using equations
(2) and (6), given by

Z
L
"jZ

c
tan [k¸#arctan (Z

r
/jZ

c
)]. (8a)

So the radiation impedance can be de"ned as that impedance yielding an input impedance
for a tube of length ¸ as given by equation (8a). This means that it can be determined from
the impedance at a distance !¸ from the end by using the following formula derived from
equation (8a):

Z
r
"jZ

c
tan [arctan (Z

L
/ jZ

c
)!k¸]. (8b)

2.1.3. ¸ength correction

Upon writing dI *"k~1 arctan[Z
r
/( j Z

c
)] equation (8a) becomes

Z
L
" jZ

c
tan[k (¸#dI *)]. (9)
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¸#dI * is the &&e!ective'' acoustical length of the tube; i.e. the length of a tube terminated
with a zero impedance of the same input impedance. Notice that it could also be referred to
as a tube terminated with an in"nite impedance (see reference [17]) which de"nes another
length correction. Equation (9) de"nes the end correction as a complex (superscript *) and
frequency-dependent quantity (upper script &). Most of the considerations in the present
paper consider only the real part of the length correction:

dI "Re (dI *). (10)

The resonance frequencies of a one-sides open tube, if Im(k) Im(dI *) is not too large, are
given by

f
n
"(2n#1) c(u)/4(¸#dI ) (11)

with c(u)"u/Re(k) and n"1, 2, 3,2
Although dI is frequency dependent, it is a useful quantity because it is approximately

constant for low frequencies (ka(0)2). The length correction considered in the present
paper is valid for a straight tube: for a horn, for example, it is only an approximation.

The re#ection coe$cient can also be written by using the following formula derived from
equations (6) and (9):

R
0
"!e!2jkdI *

"!DR
0
D e!2jkdI . (12)

2.2. THEORETICAL RESULTS FOR AN INFINITE FLANGE AND AN UNFLANGED PIPE

2.2.1 ;n-anged pipe

The end correction for an un#anged pipe has been calculated by Levine and Schwinger
[2]. As they do not give simple formula for low frequencies it is convenient to use
approximate formulas. CausseH et al. [15] proposed the following expression for the
impedance:

Z
0
/Z

c
"jkd

0
!j (ka)3 [0)036}0)034 ln(ka)#0)0187(ka)2]

#(ka)2/4#(ka)4 [0)0127#0)082 ln(ka)!0)023(ka)2] for ka(1)5. (13)

Here d
0
"0)6133a, with a the inner radius of the tube. The accuracy is given to be better

than 1%.
For the same case Norris and Sheng [18] proposed a simple approximate formula for the

equivalent length:

dI
0
"d

0

1#0)044 (ka)2

1#0)19(ka)2
for ka(3)5. (14a)

This formula is not as accurate as the one given in reference [15]. The accuracy is only 3%.
To obtain a better accuracy (1%) for ka(1)5 the present authors propose to add
a corrective term; i.e., to use the formula

dI
0
"d

0 C
1#0)044(ka)2

1#0)19(ka)2
!0)02 sin2 (2ka)D for ka(1)5. (14b)

For the modulus of the re#ection coe$cient one has [18]

DR
0
D"

1#0)2ka!0)084(ka)2

1#0)2ka#(1
2
!0)084)(ka)2

for ka(3)5. (14c)



Figure 2. Radiation impedance versus frequency for the in"nitely and un#anged case (equations (15) and (13),
respectively), and the normalized #ange. upper; length correction d over inner radius a; lower; absolute value of the
logarithm of the modulus of the re#ection coe$cient over (ka)2/2. )))))))))))), Theory for in"nite #ange [upper,
equation (15)] and un#anged case [lower, equation (13)]; ###, calculation with BEM for the in"nite #ange;
**, experimental results for the normalized #ange (see Figure 1(d) and section 5.2).
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These equations are plotted in Figure 2 with a dotted line. Note that ln( DR
0
) D/[(ka)2/2] tends

to 0)25 when frequency tends to zero.

2.2.2. In,nite -ange

The end correction for a tube with an in"nite #ange has been calculated by Nomura et al.
[3]. Norris and Sheng [18] derived a simpler form and gave the following "t formulas for
ka(3)5:

dI
=
"d

= C1#
(0)77ka)2

1#0)77kaD
~1

(15a)

with d
=
"0)8216a with a the inner radius of the tube, and

DR
=

D"
1#0)323ka!0)077(ka)2

1#0)323ka#(1!0)077)(ka)2
. (15b)

These equations are plotted in Figure 2 with a dotted line. Note that ln( DR
0
) D D[(ka)2/2] tends

to 0)5 when the frequency tends to zero.

3. INVESTIGATION METHODS

The theoretical investigations consisted of two numerical methods, the "nite di!erence
method (FDM) for ka)0)15 and the boundary element method (BEM) for ka*0)18. The
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experiments consisted of impedance and resonance frequency measurements. The
numerical methods are based on the linear acoustic equations without dissipation in
a homogeneous acoustic #uid (speed of sound c, density o). The 3-D domain considered is
denoted by X, and its boundaries are denoted by C.

For the harmonic regime at wave number k"u/c, the local equation (16) has to be
satis"ed in the domain X:

+2p#k2 p"0 in the domain X. (16)

The boundary conditions are an imposed normal velocity <
0

at the boundary C of the
domain X:

Lp/Ln"juo<
0

on C (17)

and the Sommerfeld condition at in"nity

lim
r?=

r (Lp/Lr#jkp)"0. (18)

3.1. FINITE DIFFERENCE METHOD (FDM)

The "nite di!erence method can be used for obtaining numerical approximation for
di!erential equations in a domain with speci"ed boundary conditions. In the domain
a collection of points is de"ned forming a grid or mesh. Computational &&molecules'' are
formed consisting of neighbouring points, for which di!erence schemes are set-up. This
results in a set of linear equation for the pressures in all points, which subsequently can be
solved. The accuracy is determined by the number of points of the grid. The method has no
systematic error. Since the study concerns cylindrical tubes, it is advantageous to express
the Helmholtz (wave) equation (16) for the pressure p in cylindrical co-ordinates:

1

r

L
Lr Ar

Lp

LrB#
1

r2

L2p

Lu2
#

d2p

Lz2
#k2p"0. (19)

Figure 3 shows a computational module of the 3-D discretization grid. The cylinder axis
is parallel to the top-bottom direction, the centreline is in the &western'' direction.
Figure 3. Discretization grid for a computational &&molecule''.
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In the plane perpendicular to the centreline, the central point C is surrounded by points
to the north (N), the south (S), the west (=) and the east (E), and in the plane through the
centreline, to the top (¹ ) and the bottom (B ). The grid size is denoted by h with an index
corresponding to the direction. The radius of curvature in the central point is r. The
discretization equations for the four terms of equation (19) are [19, 20]

1

r

L
Lr Ar

Lp

LrB"
2

r (h
W
#h

E
) CrA1!

h
W

2rB
p
W
!p

C
h
W

#r A1#
h
E

2rB
p
E
!p

C
h
E
D , (20)

1

r2

L2p

Lu2
"

2

h
N
#h

S
A
p
N
!p

C
h
N

#

p
S
!p

C
h
S
B , (21)

L2p

Lz2
"

2

h
T
#h

B
A
p
T
!p

C
h
T

#

p
B
!p

C
h
B
B , k2p"k2pc. (22, 23)

The points of the grid are situated in planes through the axis. These planes are angles of Du
apart in the u direction, so h

N
"h

S
"rDu.

The boundary conditions are mixed. Where the #ow is parallel to the boundary, the
derivative normal to the wall is zero: Lp/Ln"0 (equation (17)). This means that the term for
the outside (virtual) point disappears, and that in the term for the inside point the grid
dimension of the value of the outside-h is zero. In the case of a uniformly sized grid this
means that the contribution of the inside point (perpendicular to the wall) is doubled. At the
entrance points of the tube, the value of the pressure is speci"ed. In principle, the outside
region stretches to in"nity, where the pressure gradually vanishes with increasing distance,
becoming zero at in"nity. In practice, this &&in"nity'' can be limited to a distance where the
results do not vary by more than a prescribed accuracy upon varying this distance. Even
then this demands a large computer capacity. Various measures of reducing the number of
equations are possible.

The "rst and obvious step in reducing the number of equations is the use of the cylindrical
symmetry. This reduces the problem to a two-dimensional one with axial symmetry. Then
the terms with u disappear, or equation (21) can be left out. For the case where all grids are
of the same size, the discretized Helmholtz equation becomes

(1#h/2r) (p
E
!p

C
)#(1!h/2r) (p

W
!p

C
)#(p

T
!p

C
)#(p

B
!p

C
)#k2p

C
"0. (24)

In the centreline, where r"0, in equation (20) some terms become in"nitely large, making it
undetermined. This can be circumvented as follows [21]. In the centreline (r"0) the
derivative in the r direction of the pressure is assumed to be zero, or Lp/Lr (0)"0. Adding
this term of equation (20) gives

1

r

L
Lr Ar

Lp

LrB"
1

r A
Lp

Lr
(r)!

Lp

Lr
(0)B#

L2p

Lr2
(r). (25)

In the limit of rP0, the "rst term on the right-hand side is equivalent to the de"nition of the
second derivative of p to r. So, for r"0, the right-hand side of the expression becomes
2 (d2p/Lr2) (0). Because of cylindrical symmetry, only the part east of the centreline needs to
be considered, or p

W
"p

E
. The discretization equation for points around the centreline now

becomes

4 (p
E
!p

C
)#(p

T
!p

C
)#(p

B
!p

C
)#k2 p

C
"0. (26)

The problem now is formulated as a linear system of equations for the pressures in the
mesh points. The resulting matrix equation can be solved (by using a computer) by standard
techniques, either directly or by relaxation.



Figure 4. Example of grid for hole with #ange, stretching into space.
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The e!ective length of the tube is obtained from the input impedance of the combination
looking into the tube, which is calculated from the mean value of the gradient at the tube
entrance plane. From this the end correction is calculated by comparision with that of
a straight cylinder with a zero terminating impedance. To illustrate the procedure consider
the case of zero frequency, where k"0. The pressure gradient Lp/Lx at the entrance of the
tube is related to the pressure p

0
(or velocity potential) at the tube entrance, and the length

of the tube, ¸, including its end correction d at the radiating open end by

Lp/Lx"!p
0
/(¸#d). (27)

In the present calculation, p
0

was set to 1.
A further reduction of the number of equations is obtained by limiting the length of the

cylindrical tube part. It was veri"ed that taking this length equal to the radius caused an
error of less than 0)01% in the end correction.

Figure 4 shows an example of a grid in a particular situation. The boundaries at which
the pressure values are prescribed are indicated by thick lines. At boundaries with thin lines
the normal velocity vanishes. In this example another saving measure is shown, namely
stepwise increasing the grid spacing (here with a factor of 1)4) starting at a certain distance
from the tube end.

The next equations-saving measure uses the fact that at a su$ciently large distance and
su$ciently low frequency (in this paper ka)0)15), the "eld becomes practically identical to
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that of a spherical source. For such a "eld (with assumed strength ; ) the pressure at
a distance R from the source p (R)"(o (d;/4nR) dt) [22, p. 155] or p(R)"A/R, where A is
a constant determined by

o d;/dt"4nA. (28)

In the present con"guration the source is formed by the open end of the cylindrical tube
with radius a, the #ow (volume velocity) ; existing the tube is found from

od;/dt"na2 Lp/Lx. (29)

Setting the pressure at an outside boundary at a distance R equal to A/R and combining
equations (27)}(29) gives a relationship between A and d:

A"p
0
a2/4 (¸#d ). (30)

To solve this for the two unknowns A and d a second conditions is necessary. This can be
obtained by using an estimate for A and calculation the gradient for two values of R,
plotting Lp/Lx versus 1/R and extrapolating to zero. Assume the estimate for A to be A#a.
This means that the value at the boundary is an amount a/R too high, due to which the
pressure drop between the tube entrance and the boundary diminishes by the same amount.
Figure 5. Plots of the real part of the end correction coe$cient d/a for a #at circular #ange as a function of a/R,
where a"cylinder radius, R"distance to the &&far'' boundary and k"wave number. m, ka"0, A"0)27a; d,
ka"0, A"0)18a; 3, ka"0)15, grid stretch"4%; L, ka"0)15, grid stretch"5%; n, ka"0)15, grid
stretch"5)5%; e, ka"0)15, grid stretch"6%.
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So the pressure value at the tube entrance becomes p
0
!a/R instead of p

0
, due to which

equation (27) changes into

Lp

Lx
"

!p
0

¸#d
#

a
¸#d

]
1

R
. (31)

Extrapolating the value of Lp/Lx to zero in a plot of Lp/Lx against 1/R gives p
0
/ (¸#d),

from which d is obtained since p
0

is given. For greater accuracy, and to verify the absence of
near"eld e!ects, more than two values of R were taken. Alternatively, d can be plotted
directly versus 1/R. Figure 5 shows two examples of plots of d/a versus a/R, for a/b"0)5,
where ¸"a"15 mesh points, and A"0)18a and 0)27a respectively. The network stretch
was varied between 2 and 10% over 70 points. Lines through the points appear to be nearly
straight and both cut the vertical axis at approximately d/a"0)7442. To estimate the
possible error, several calculations with varying choices of the network parameters were
made. It was found that the results were the same within $0)001, provided the number of
points over the radius was more than 10, and ¸*a. Similar results were observed for other
#ange sizes. It seems justi"ed to state that the results obtained with the "nite di!erence
method deviate less than 0)005 from the real values.

When the wave number k is complex, pressure values become complex and prescribing
the conditions at the outside boundaries as real values is not correct. Instead, Sommerfeld's
condition must be used (equation (18)). In the grid used, where most of the mesh lines are
not in the R direction, this condition takes on the form

Lp/Ln"jkp. (32)

Since the tube is no longer a pure acoustic mass, equation (27) has to be modi"ed as follows:

Lp/Lx"!k p
0
/tan(k¸#kd). (33)

The solutions obtained are complex, so the obtained end correction is also complex. This
gives the end correction as well as the term in the radiation impedance related to the losses.

An example of results obtained is shown in Figure 5 for the same parameters as a in the
example for zero frequency, except now the Helmholtz number ka"0)15. By applying
various amounts of stretch and a varying number of points in the stretched part of the
network, various distances to the boundary were created. The results plotted in Figure
5 appear to oscillate, the amplitude initially decreasing for increasing R. The wavelength of
the oscillation appears to be related to an integer number of wavelengths to the boundary.
One wavelength means kR"2n, or a/R"0)15/2n"0)24. The pattern repeats when this
number is halved or doubled. Apparently, the remaining re#ections from the boundary are
causing the #uctuations. For low values of ka, the oscillations were found to damp out
su$ciently with increasing R to allow the establishment of a trustworthy value for the end
correction. For the ka in the present example, however, the oscillation amplitude grows
again with increasing distance. Most likely this is caused by the mesh dimensions becoming
comparable to the wavelength, rendering the discrete approximation for the wave equation
inaccurate. In the present case, the Helmholtz number for one non-stretched mesh unit is
0)15/15"0)01; for a stretch of 6% over 70 steps it is (1)06)70"60, so the Helmholtz
number of the "nal mesh is 60]0)01"0)6, signifying that the sine or tangent of this number
is not the same as the argument any more. A larger computer capacity would be needed to
obtain more accurate numbers. In the present study, the value obtained for the end
correction coe$cient will be between 0)735 and 0)75, the most likely value being 0)742,
de"nitely lower than the one for zero frequency.
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The values for the extremes a/b"0 and 1 are known from theory; calculating these with
the FDM is a valuable check on the method. For a/b"1, a series of calculations was done
for a wall thickness of 1 element (the minimum value) and an increasing number of elements
for the radius. Each radius value corresponded to a value of a/b. The end correction
obtained was plotted versus its corresponding a/b value and extrapolated to a/b"1. The
value obtained appeared to equal the analytical value. For a/b"0, the program was
modi"ed. The tube radiated into a half-in"nite space or rather into the inside of
a half-sphere. The #at hard wall of this half-sphere had a circular hole of radius a in its
centre. The radius of the sphere was equal to the #ange radius b. On its spherical wall the
function value was set to A/R. Upon varying b, for a given value of a, end correction
coe$cients were obtained for various values of a/b. The value extrapolated to zero was,
within uncertainty, equal to the theoretical value.

As remarked above, the program also produces values for the lossy part of the
impedance. However, the amplitudes of the #uctuations were much larger. It was di$cult to
"nd accurate answers other than the fact that the term is between (ka)2/2 and (ka)2/4, the
extreme values for in"nite and zero #ange respectively.

3.2. BOUNDARY ELEMENT METHOD (BEM)

The boundary element method (BEM) is based on writing the local equation (16) and the
boundary conditions (17) and (18) from surface integrals on C. By discretization of the
boundary in elements, these integrals can be numerically computed. The solution of this
linear set of equations gives the pressure p on the surface C for the considered frequency.

The surface integral is obtained by using the Green function G

G(r, r
0
)"e!jk Dr!r

0
D/4nDr!r

0
D, (34)

which is the basic solution of the wave equation

DG(r, r
0
)#k2G(r, r

0
)"!d (r!r

0
), (35)

where d(r!r
0
) is the Dirac function centred on r

0
, which satis"es the Sommerfeld condition

lim
r?=

r A
LG

Lr
#jkGB"0. (36)

The Green theorem gives the integral relation

PC Ap
LG

Ln
!G

Lp

LnB dC"PX

(p+2G!G+2 p) dX.

From the wave equation and the Dirac properties, r
0

pointing on any regular point of C,
this surface integral can be written as

PCAG (r, r
0
)
Lp(r)

Ln
!p (r)

LG(r, r
0
)

Lnr B dC (r)"p(r
0
)/2 for every r in the C domain, (37)

or, upon including the boundary condition (17),

PCAG (r, r
0
) jou<

0
!p (r)

LG(r, r
0
)

Lnr B dC(r)"p (r
0
)/2 for every r in the C domain, (38)

where o, u and the normal velocity;
0
on the boundary C are data introduced in the model,

and G(r!r
0
) is the frequency-dependent Green function (34). Because of the singularity of
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the Green function G and its normal derivatives when rPr
0
, the surface integrals (37) and

(38) are de"ned in Cauchy's principal value sense.
In the BEM method, a mesh constituted of triangular and quadrangular elements

discretizes the surface C. On the each element, the pressure "eld p on the boundary is
interpolated by quadratic polynomials from the pressure values p

i
of speci"c points, called

&&nodes''. In the meshes used in this study, the nodes are the element's edge mid-points and
end-points (six nodes belong to a triangular element, eight nodes to a quadrangular
element).

A surface integral like the left-hand side member of equation (38) can then be computed
by using Gauss integration, with a polynomial approximation for the Green function (34)
and its normal derivative. Because of the behaviour of this function, the number of Gauss
points used to complete the integration is increased when the distance (r!r

0
) decreases,

and special techniques must be used when r
0

and r are pointing to the same element.
In fact, two approximations are introduced in the exact integral form (38) by the

boundary element method: the pressure "eld is represented by polynomial interpolation
from discrete node values and this approximation is de"ned by the mesh; i.e. the element
size and the total number of nodes; the computation of the surface integral, when using the
Gauss integration technique, introduces an approximation of the Green function (34) [23].

Another problem is introduced by the integral form (38), presenting a non-unique
solution for some discrete frequencies. At such &&irregular frequencies'', solutions of equation
(38) may not be physical, introducing stationary waves between surface elements of C where
there is no acoustic #uid between these surfaces. These irregular frequencies depend on the
geometry of the model and the speed of sound c. The present study concerns simple
geometrices for which irregular frequencies are predictable; therefore we were able to avoid
computing acoustic responses at irregular frequencies corresponding to our model's
geometry.

3.2.2. Boundary element model de,nition

The BEM models were computed by using the 3-D RAYON code, based on a variational
formulation of the integral form (38) [24]. The components of the full square matrix are
double integrals over the surface C, the second member is a simple integral over C. The node
values of acoustic pressure on surface C are computed, which means solving a n]n linear
set, n being the number of nodes of the mesh. Notice that when using boundary elements,
the acoustic pressure is computed on the surface only, while pressure in the volume is not
computed: the acoustic pressure on the surface of the piston is directly obtained.

When some symmetry planes exist, as is the case for circular #anges (see section 4), only
one-quarter of the geometry is meshed, and the adapted Green function takes into account
the symmetry [25]. Such an adaptive Green function can also take into account an in"nite
rigid ba%e, without meshing it. This is used in section 2.2.2. for checking the accuracy of
BEM calculations.

The modelled geometry is a circular tube of various thickness and length 100 mm. The
source is modelled as a #at piston in the tube moving with a de"ned velocity. The back side
of the piston is enclosed so that it radiates only on one side. In order to correctly interpolate
the pressure "eld on the surfaces of the tube and of the #ange, the boundary element models
are de"ned by using curved elements. The meshes used are as regular as possible; both the
inner and the outer side of the tube are meshed by quadrangles, the piston surface is meshed
by triangular elements (see Figure 6).

The boundary conditions on rigid surface are <
0
"0, except on the piston surface, where

a "nite normal velocity of unity is imposed. The model is of "nite dimensions, the tube has



Figure 6. Mesh used for the boundary element model of a tube with a circular #ange (case a/b"1/2).
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a "nite length and is ended by a cylinder base. The cylinder base surface causes acoustic
re#ections on this rear surface. In order to minimize this e!ect, this rear surface is modelled
as acoustically absorbing, with a speci"c impedance equal to unity.

The piston mesh has one node in its centre. After computation, for each frequency, the
value of acoustic pressure at this point is obtained. Acoustic velocity being equal to unity,
the radiation impedance is then deduced from this pressure, by using equation (8b).

The model, with two planes of symmetry and the acoustic pressures on surfaces used as
unknowns was tested for the case of an in"nite #ange. Figure 2 shows that the di!erence
between the theoretical curve and BEM calculations is small (less than 1%) except for low
frequencies such that ka(0)2. This is probably due to numerical errors due to the low value
of the pressure. Since this discrepancy appears to be the same for most situations,
a correction g was added to the length correction for all results. By trial and error, this was
found to be

g"0)027a/(1#75 (ka)2). (39)

Less accurate results were obtained for situations for which plane symmetry does not
exist as, for example, the normalized #ange or the cylindrical #anges. Deviations were much
larger than for the in"nite #ange.

3.3. EXPERIMENTS

2.3.1. Impedance measurements

The principle of the method is to measure the input impedance of a short tube of length
¸ and of diameter 2a (usually ¸ is the less than 100 mm and a"10mm) and to deduce from
this impedance Z

L
the radiation impedance Z

r
by using equation (8b).

Despite the simplicity of this principles such a measure is not so easy to realize in practice.
The "rst di$culty is caused by the fact that the dynamic range of the input impedance is
large: it can be 80 dB between a maximum and a minimum. Measurements need to be
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equally accurate for minima and maxima. Another di$culty is that the radiation impedance
is not a very large e!ect: for plane #anges the low-frequency value of the length correction is
between 0)61 and 0)82 times the radius. To obtain useful information on the length
correction its value needs to be obtained with an accuracy of at least 1 or 2% of the radius.
For a tube of the radius 10 mm such as the one used for the present experiments it means
that the accuracy on the length correction must be one or two-tenth of a millimeter. All the
dimensions need then to be measured accurately and the temperature has to be controlled
as well. Such an accuracy can only be obtained with a painstakingly calibrated impedance
sensor.

The impedance sensor used is based on the one described by Dalmont and Bruneau [26].
It uses a half-inch electrostatic microphone cartridge as a volume velocity source and one
electret microphone. The microphone cartridge and the electret microphones are "xed in
a metal plane which constitutes the reference plane for the measurements. The microphone
and the source are placed as close as possible to the reference plane but some extra volume
remains between the microphone membranes and the plane. The use of a microphone
cartridge is attractive because its frequency response is rather #at and its mechanical
impedance is relatively high. The limitation of this kind of source is that the volume velocity
is proportional to the frequency and tends to zero when this frequency tends to zero. This
makes measurements at low frequencies di$cult. The measurements were carried out in an
anechoic chamber with a dual-phase lock-in ampli"er including a sine source used for both
excitation and demodulation.

A precise calibration is important to minimize the error at every frequency and at every
level. Details of the calibration procedure are given in reference [16]. It is based on the
measurement of a long (1 m) and a short (0)085 m) tube, both closed. The calibration tubes
are "xed on the measurement set-up with the same guiding tube which is not removed
between experiments. All the #anges are "xed on the short calibration tube so that the
diameter and position on the sensor are the same as that during the calibration. When
di!erent #anges have to be measured only the #anges are removed. Every manipulation is
done with gloves to minimize temperature changes.

The "nal accuracy of measurement is determined by uncertainties in geometry and
temperature. The length of the tube with a #ange is measured together and the accuracy on
the total length is estimated to be $0)05 mm. The error in the calibration parameters is
estimated to be equivalent to $0)1mm. This error is much higher for low frequencies and
therefore this method cannot be used for low frequencies (for details see reference [16]).
Temperature is measured with an accuracy of $0)33C which leads to an equivalent length
error of $0)05 mm for a 10 cm tube length. Total uncertainty on the equivalent length can
then be as large as $0)2mm. Besides, some unexpected errors can occur and only
confrontation with an other estimation method can con"rm the accuracy of the method.

3.3.2. Resonance frequency measurements

The resonance frequencies of a closed}open tube are given by equation (11). Measuring
the "rst resonance frequency f

1
, the temperature, and the length of the tube ¸ gives the

length correction

dI ( f
1
)"

c

4f
1

!¸. (40)

This method gives the length correction at the "rst resonance frequency: it may di!er
from the low-frequency limit. However, it is a convenient method when determining the
di!erence between di!erent end geometries. In the present paper, it is used for the case of
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a tube with a disk at a varying distance from the open end. The length correction is
compared to the length correction without disk, which was previously determined with
another method.

The length di!erence is assumed to be equivalent to the one at zero frequency. The same
short tube was used as for impedance measurements (length 0)085 m) which means that
errors due to temperature deviations are small. Since the accuracy of a resonance frequency
measurement at 1000 Hz is 0)1Hz, the error on an e!ective length of 10 cm is 0)01 mm which
is much better than the geometrical uncertainty.

4. CIRCULAR FLANGES

Figure 7(a) shows some results from the literature. The "t formula obtained
experimentally by Benade and Murday [7] for a cylindrical #ange of varying diameter is
plotted as a dashed line. Analytical results by Ando [8] corrected by Bernard and Denardo
[9] are indicated by triangular symbols. Peter et al. [5] did measurements for relatively thin
#anges; these are also plotted in Figure 7(a). Nederveen (1998) reported preliminary results
obtained by a "nite di!erence calculation (FDM), which also are plotted in Figure 7(a).
Measurements of Denardo and Bernard [27] for a/b"0)33 indicated a coe$cient of about
0)82. The various results do not agree much.

4.1. ZERO AND LOW-FREQUENCY LIMIT

4.1.1. Results with FDM

One question about circular #anges is whether the thickness has an in#uence on the
length correction. This was investigated by the FDM. Two cases were considered: one
where the #ange is a &&thick'' wall (as in Figure 1(b)) and one where it consists of a disk of
minimal thickness (as shown in Figure 1(a)). In the latter case, its thickness was one mesh
element, which, dependent on the number of points applied, is between 0)1 and 0)05 of the
radius. Results for the thin disk as a #ange are not very di!erent from those of a thick wall
(see Figure 7(b) and Table 1) showing that the thickness of the #ange is a parameter which
does not have a large in#uence on radiation impedance. The di!erence between thick and
thin #anges was also studied with BEM and it was also found that the di!erences are small.
The overall accuracy in d is estimated to be $0)3%.

4.1.2. Results extrapolated from BEM

As the BEM is not valid for low frequencies, results cannot be directly compared with
those of the FDM. However, after the correction with the function g (equation (39)), the
slope of the curve at low frequencies is nearly horizontal which allows one to extrapolate
results to zero frequency. Results are plotted in Figure 7(b) and are in good agreement with
FDM.

4.1.3. Formula

From the FDM results a "t formula was deduced for the the length correction:

d
circ

"d
=
#

a

b
(d

0
!d

=
)#0)057

a

b C1!A
a

bB
5

D a. (41)



Figure 7. Real part of the end correction coe$cient d/a for a #at circular #ange. (a) Literature results; ------,
Benade and Murday [7]; n, Ando [8] and Bernard and Denardo [9]; j, Peters et al. [5]; L, Nederveen [12]. (b)
Results with FDM for thin and thick #ange and extrapolated results from BEM. K, FDM, thin circular #ange; r,
FDM, thick circular #ange; **, "t formula; ], BEM extrapolated.
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Here, d
=
"d (a/b"0)"0)8216a and d

0
"d (a/b"1)"0)6133a. The accuracy is estimated

to be better than $0)01a. This equation can be interpreted as a linear interpolation
between the two extreme values for the in"nitely and un#anged pipe, with a higher order
correction term of less than 5%.



TABLE 1

End corrections for various -anges obtained by the FDM; listed are d/a"length
correction/pipe radius; for a square pipe the radius a is an 00e+ective11 value calculated from

a"pipe width/Jn

A B C D E

a/b Thick circular #ange Thin circular disk Sphere Cylinder Square #ange

0 0)821 0)821 0)821 0)821 0)810
0)1 0)807 0)806 0)760 0)750 0)795
0)2 0)792 0)790 0)725 0)690 0)780
0)3 0)777 0)775 0)700 0)650 0)764
0)4 0)761 0)757 0)685 0)610 0)747
0)5 0)744 0)741 0)670 0)560 0)730
0)6 0)726 0)722 0)655 0)515 0)711
0)7 0)707 0)703 0)646 0)455 0)691
0)8 0)684 0)681 0)637 0)668
0)9 0)657 0)653 0)625 0)640
1)0 0)613 0)613 0)613 0)597
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4.2. FREQUENCY DEPENDENCE

4.2.1. Frequency dependence estimation with BEM and measurements

Measurement have been carried out with #anges of various diameters b (b"11, 12, 15,
20, 30 and 50 mm) "xed on the same tube of length 85 mm, wall thickness 1 mm and inner
radius a"10 mm. Each #ange has the same thickness of 10 mm except for b"11 mm
which corresponds to an &&un#anged tube'' of thickness 1 mm. These dimensions correspond
to those calculated with BEM. Results appear to be in good agreement with measurements
for every diameter, for the imaginary part of the re#ection coe$cient as well as for the real
part (see Figure 8). For reference the results for, respectively, the in"nite #ange and the
un#anged case (equations (13) or (14) and (15)) are also plotted in Figure 8.

Oscillations visible in the curves of Figure 8 appear to be related to the radius of the
#ange. In reference [27] Bernard and Denardo found a value of 0)82a for the length
correction. This was for a/b"0)33 and for ka:0)15. This value corresponds more or less
to results obtained with BEM. For small thickness, real parts of radiation impedance are
very close to the un#anged case for low frequencies. For larger #anges it appears that the
low-frequency limit always equals the value for the un#anged case and the high-frequency
limit equals that for the in"nite #ange case. This can be easily explained. Upon assuming
ka@1 and kb@1 a compact region can be de"ned in which a radial symmetrical #ow can be
established outside the pipe. By using mass and energy conservation in this region the plane
wave solution in the pipe and the spherical wave solution in the far "eld outside the pipe can
c
Figure 8. Radiation impedance versus frequency for circular #anges of various radii. Upper, Length correction

d over inner radius a; lower, absolute value of the logarithm of the modulus of the re#ection coe$cient over (ka)2/2.
(a) a/b"10/11; (b) a/b"5/6; (c) a/b"2/3; (d) a/b"1/2; (e) a/b"1/3; (f ) a/b"1/5. )))))))), Theory for in"nite #ange
[upper, equation (15)] and un#anged case [lower, equation (13)]; ####, calculation with BEM; **,
experimental results; -------, "t formula (equations (41), (42)); f f f, Ando [8] and Bernard and Denardo [9] results
("gure 8(a) and 8(b) only).
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Figure 9. End correction coe$cient d/a for a #at circular #ange as a function of ka. e, a/b"1/5 (FDM);
L, a/b"1/3 (FDM); n, a/b"1/2 (FDM); K, a/b"5/6 (FDM); 3, BEM.

524 J.-P. DALMONT E¹ A¸.
be matched leading to !log DR D"(ka)2/2. Upon assuming ka@1 and kbA1 the real part of
the pipe radiation impedance is doubled because the plane wave solution matches to
a half-spherical wave outside (see for example reference [28] pp. 41}42).

4.2.2. ¸ow-frequency dependence with FDM and BEM

The BEM fails below ka"0)15 and the FDM loses accuracy above this value. However,
results appear to "t well in this region as can be seen from Figure 9 where real parts of the
end corrections are plotted, as obtained by BEM at ka"0)18 and by FDM for ka)0)15.
The results correspond within 1% of d.

4.2.3. Formula

To construct a "t-formula the observation from Figure 8 that oscillations are probably
caused by a re#ection at the edge of the #ange (see Figure 1(c)) is used. This re#ection can be
modelled as a re#ection coe$cient R

edge
which has to be added to the re#ection coe$cient

R
norefl

in the absence of re#ection at the edge of the #ange. The re#ection coe$cient R
circ

for
the circular #ange is assumed to be given by

R
circ

"R
norefl

#R
edge

. (42a)

The re#ection coe$cient R
norefl

, upon writing dI
norefl

*"j ln (!R
norefl

)/(2k), is assumed
to be given by formula (41) with complex and frequency-dependent values for the length
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corrections dI
=
* and dI *

0
which can be deduced, respectively, from equations (15) and (13) or

equation (14) (as dI *"dI #j ln( DR D )/(2k)).
After trial and error the following expression for the re#ection coe$cient R

edge
was

found:

R
edge

"!0)43
(b!a) a

b2
sin2 A

kb

1)85!a/bB e!jkb[1#a/b (2)3!a/b!0)3(ka)2)] . (42b)

where k is the wave number.
The accuracy for the equivalent length correction dI

circ
(calculated by dI

circ
"

Re[ j ln(!R
circ

)/(2k)]) is estimated to be better than $0)02a. The accuracy in the modulus
of the re#ection coe$cient DR

circ
D is estimated to be better than $1%. This is valid

for a/b*0)2, ka(1)5 and kb(3)5. This function is plotted for di!erent values of a/b in
Figure 8.

5. SQUARE AND NORMALIZED FLANGES

5.1. SQUARE FLANGE ON A SQUARE TUBE

Wooden organ pipes usually have a square section and, the thickness of the pipe wall
being constant, they end with a square #ange. Seen from the axis of the pipe, the ratio a/b is
the same in every direction. An obvious estimate of the end correction is therefore that of
a cylinder with the same cross-section and the same thickness. For a square pipe with

a half-width a
sq
, the inner radius of this substitution cylinder is a

eff
"2a

sq
/Jn and the

outer radius b
eff

"2b
sq

/Jn.
An approximation for the radiation length correction can be obtained by assuming the
#ow to be perfectly radial. In that case, the inertance of the end (proportional to the end
correction) can be found by adding the reciprocal inertances of thin slices, of which the
values are known from the circular #ange. Since the value of a/b in every direction is the
same, this calculation can be done analytically. Since cross-#ow is neglected, the thus
obtained value will be too high [22, pp. 343 and 29].

To calculate the correction without this systematic error, the FDM was used. Because of
symmetry, a segment of 453 was su$cient. In this segment a three-dimensional Cartesian
network was generated. Compared with the previous calculations, the number of points was
much higher. To obtain accurate results, many situation with di!erent numbers of points
over the width of the channel and di!erent amounts of stretch needed to be investigated.
For a/b values of 0 and 1 the same procedure was used as described for the circular #ange.
Values for a/b"0)1 and 0)9 were rather inaccurate. Their accuracy was improved by
comparison with the radial #ow values and by interpolation between adjacent values. The
error in the results is estimated to be $1%. Results are given in Table 1 and in Figure 10.
The following "t equation is useful:

d
sq
"d

sq=
#

a

b
(d

sq0
!d

sq=
)#0)057

a

b C1!A
a

bB
5

D a
eff

. (43)

Here d
sq=

"0)811a
eff

and d
sqo

"0)597a
eff

.
The di!erence with the values for the circular #ange is less than 3%. This suggests that

formulas for similarly shaped #at #anges such as ellipses or rectangles will be approximately
the same.



Figure 10. Length correction coe$cient for a square #ange, a spherical #ange and a cylindrical #ange as
a function of the tube/#ange diameter ratio; n, Sphere (FDM); m, sphere (experiment); K, #at square (FDM);
L, cylinder (FDM); f, cylinder (experiments);**, "t formulas.
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5.2. NORMALIZED RECTANGULAR FLANGE ON A CIRCULAR PIPE

For loudspeaker characterization a normalized rectangular #ange is used [30]. Its
dimensions, given in Figure 1(d), are such that there is no simple ratio between any of the
dimensions, apparently to avoid resonances due to re#ections at edges.

Because this #ange has no symmetry axis, and a 3-D FDM mesh would mean an even
larger number of nodes than in the previous case, some alternative ways were used to "nd
an approximate solution. An obvious simpli"cation is replacing the rectangular #ange with
area S with a circular one with radius b with the same area S according to b"(S/n)1@2. This
gives a/b"0)119, which, upon applying equation (41), corresponds to an end correction of
d"0)804a. Another way of obtaining an approximation is, as was done in the previous
case, adding the reciprocal inertances of a large number of slices for each of which the
inertance was set equal to the value for a circular #ange. This was done for 72 slices over the
circumference. This yielded an end correction of d"0)803a. For an estimate of the possible
error in this calculation one can compare the results with those obtained for the cylindrical
#ange by the two methods (see section 6.2). For the cylinder, for the present a/b, a deviation
of about 0)003 was observed. This leads to a most likely value of d

norm
"0)800a. The

following formula for the normalized #ange is proposed:

d
norm

"(0)975$0)01) d
=

. (44)

The di!erence with an in"nite #ange is small.
Results with BEM for this shape were insu$ciently accurate. A measurement was carried

out with the same tube as for circular #ange. Results show that the in"nite #ange theoretical
curve and measurements are very similar, showing that the normalized #ange can be
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considered as a good approximation of the in"nite #ange (see Figure 2 upper). The modulus
of the re#ection coe$cient DR D seems to be close to the one for the in"nite #ange (see Figure
2 lower). In fact, for the very low frequencies it may tend to the value for the un#anged case
(ln(DR D)"(ka)2/4 instead of ln ( DR D)"(ka)2/2) but in that case these quantities are very small
and may be neglected. It can be concluded that the normalized #ange is a rather good
approximation of the "nite #ange and that equation (44) can be used with a complex and
frequency-dependent value of the in"nite #ange length correction (equation (15) with
dI *
=
"dI

=
#j ln ( DR

=
D)/(2k)).

6. SPHERICAL AND CYLINDRICAL FLANGES

6.1. SPHERICAL FLANGES

Results obtained by FDM for a #ange in the form of a sphere, as can be found on some
wind instruments (English horn for example), are plotted in Figure 10, with triangles.
Accuracy is estimated to be $3%. The following "t-formula is drawn through the points:

d
sph

"d
=
#

a

b
(d

0
!d

=
)!0)11 A

a

bB
1@3

A1!
a

bB a. (45)

One case was investigated experimentally: for a/b"0)45 this gives the value
d
sph

"(0)68$0)04)a which agreed with FDM results. Frequency dependence is
intermediate between frequency dependence for the "nite #ange and the un#anged case. In
fact, a spherical #ange is not expected to exhibit an oscillatory behaviour in the re#ection
coe$cient as encountered in the case of the thin #ange since it has no sharp edge. This
suggests that equation (45) may also be used for higher frequencies up to ka(1)5 (with dI

=
and dI

0
instead of d

=
and d

0
respectively).

6.2. CYLINDRICAL FLANGES

For FDM calculations on cylindrical #anges, the domain was cut in the angular slices
and the two-dimensional situation was extended with terms interconnecting the slices,
creating conditions for the three-dimensional situation. Because of symmetry, a domain of
903 su$ces. The #anges in the slices were parts of spheroids, for which the conditions were
modi"cations of those of the spherical #ange of the previous case. Results are shown in
Figure 10, with circles, and the line drawn through the points is the "t formula valid for
a/b(0)7:

d
cyl
"d

=
!0)47 (a/b)0>8 . (46)

Estimated accuracy is estimated to be $5%. To verify the 3-D procedure, the #ow was
approximated by taking the mean value of results from 2-D #ow in the slices. As mentioned
above, the values thus obtained are expected to be somewhat higher. This amounts to about
1% for low values of a/b and about 7% for the highest value of 0)7.

Experiments were carried out for di!erent values of the cylinder radius b. Results
extrapolated to zero frequency are shown in Figure 10 for di!erent values of a/b (a/b"0)63;
0)5; 0)4; 0)33; 0)25). Agreement with numerical calculation is not very good, the di!erence
being 10% for a/b"0)25. This requires further investigation.



Figure 11. End correction coe$cient d
H
/b for a tube with a short catenoidal horn as a function of the reduced

horn length ¸
H
/a (FDM calculations). K, a/b"0)7; e, a/b"0)6; 3, a/b"0)5; L, a/b"0)4; n, a/b"0)3;**, "r

formulas.
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7. QUICKLY FLARING SHORT HORNS

Some instruments (saxophones, for example) have a quickly #aring short horn (see Figure
1(g)). Most horns are nearly catenoidal. For this horn, the radius r is given by
r"a cosh(x/h), where a is the throat radius, x the distance to the throat of the horn and
h a constant. The "nite di!erence method was employed to "nd an end correction for such
horns. Although saxophones are conical, the horn #ares quickly enough for one to assume
that the value obtained for a horn onto a cylinder will be approximately the same as that on
a cone. Results are plotted in Figure 11 versus total horn length divided by the throat radius
a. Note that the end correction is applied to the horn end which means that at wider horns
the correction can become negative. The length correction is referred to the outer radius of
the horn b. Drawn lines are according to the following "t formula, valid for ¸

H
/a)2 and

0)3)a/b)0)7:

d
H
"A

tanh(arc cosh(b/a))

arc cosh(b/a)
!1B ¸

H
#

d
circ

a

1#0)28 (¸
H
/a)0>7 (a/b)~1@4

. (47)

The "rst term is the value for a long catenoidal horn with a zero-impedance termination (see
for example reference [12]). The second term is a correction due to the #aring open end.
A measurement was carried out for a short catenoidal horn where ¸

H
/a"1 and a/b"0)5.

The frequency dependence appeared to be much more intricate than for the in"nite #ange
or the un#anged pipe. Therefore, the zero frequency value obtained by extrapolation to zero
is rather uncertain. The length correction obtained for this horn was d

H
"(0)2$0)1) a

which is in good agreement with the FDM result (d
H
"0)1b"0)2a).



TABLE 2

Survey of FDM calculations for disk above open end; numbers are numver of elements used

Figure Inner radius Wall thickness Disk radius Disk thickness Diskhole radius
a w d e q

9 40 10 66 16 0
9 40 8 59 16 0
9 40 4 55 16 0
9 40 2 53 16 0
9 40 1 52 16 0

10 40 4 55 16 0
10 40 4 55 4 10
10 40 4 55 16 10
10 40 4 55 4 20
10 40 4 55 16 20
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8. KEY HANGING ABOVE A HOLE, WITH AND WITHOUT A PERFORATION

A disk or key positioned at a certain distance above a hole increases the end correction
notably. The most important parameter is the distance to the rim of the hole. Others are the
wall thickness of the chimney the key is hanging above, the key dimensions and the optional
hole in this key. Figure 12 shows the nomenclature for the various parameters. Table 2 lists
the situations investigated. In Figure 13, the extra e!ect due to the presence of a disk
without a hole is plotted versus the lift height of the disk. The results and those in Figure 14
are plotted on a double logarithmic scale, which appear to present results better than with
one or both axes linear. The common range for the value h/a on wind instruments is
between 0)1 and 1. Roughly approximated, the end correction is inversely proportional to
h/a, with deviations at the extremes of the range. The magnitude of the e!ects can be seen in
the diagram. When the key is close to the hole it adds an important extra length to the hole,
between one and two times its radius. When the key is further away, the correction can be
about 0)05a which is small but not negligible. Various wall thicknesses were studied. FDM
results are plotted with circles. Lines are corresponding "t formulas according to

d
disk

!d
circ

"

a

3)5(h/a)0>8 (h/a#3w/a)~0>4#30(h/d)2>6
, (48)

where w is the wall thickness and d the radius of the disk. d
circ

is the value of the length
correction without disk. It is given by equation (41) with b"a#w. The thickness of the
disk e was varied, but it was found to have only a minor in#uence, so it is not included in the
formula. Experiments, based on resonance frequency measurements, have been carried out
with a"10mm, w"1mm and d"13)75 mm. Results are shown with plus-symbols in
Figure 13 and appear to be in good agreement with the proposed "t formula. This formula
is applicable in the range for which it is plotted in Figure 13.

For a key with a perforation, the dimensions investigated are listed in Table 1. Some
results obtained with the FDM are shown in Figure 14. To construct a "t formula, it was
speculated that the disk hole impedance plays an important role. The end correction was
chosen as a parameter to be applied when the key is closed (that means that h"0). This end
correction can be calculated from well-known formulae. The length of the hole consists of
its physical length e and two end corrections. The one on the outside d

out
is given by

equation (41) with q, disk hole radius, instead of a and d, disk radius, instead of b giving
d
out
"d

=
#q/d (d

0
!d

=
)#0)057q/d [1!(q/d)5]q with d

=
"0)822q and d

0
"0)613q. The



Figure 12. Dimension de"nition for a disk (key) above an open end.

Figure 13. Dependence of the change in the end correction coe$cient (d
disk

!d
circ

)/a versus the relative distance
h/a for various wall thickness w (from top to bottom w/a"0)25, 0)2, 0)1, 0)05 and 0)025). L, FDM calculations;#,
experiment for w/a"0)1; **, "t formula.
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inside correction d
in

is taken from a study by Kergomard and Garcia [31] for which a useful
"t formula was derived by Nederveen [12] for the zero-frequency case:

d
in
"d

=
!1)1q2/a#0)28q(q/a)3>5. (49)

The e!ective length of the hole in the disk is e#d
in
#d

out
. This can be transformed into

a length correction d
e
to be applied to the main hole:

d
e
"(a/q)2 (e#d

in
#d

out
]. (50)



Figure 14. Dependence of the change in the end correction coe$cient (d
perf

!d
circ

)/a versus the relative distance
h/a for disks of various thickness e with perforations of various diameters q (from top to bottom e/a"0)4 and
q/a"0; e/a"0)4 and q/a"0)25; e/a"0)1 and q/a"0)25; e/a"0)4 and q/a"0)5; e/a"0)1 and q/a"0)5; see
Table 1 for details). L, FDM calculations; #, experiment for w/a"0)1; **, "t formula.
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Upon neglecting the higher order terms in equation (50) the following result for d
e
/a is

obtained:

d
e
/a"[1)64a/q!0)15a/d!1)1#ea/q2]. (51)

This is used in a "t formula for a perforated disk, obtained by trial and error, as follows:

d
perf

!d
circ

"

d
disk

!d
circ

1#5(d
e
/a)~1>35 (h/a)~0>2

. (52)

These function are plotted in Figure 14 for some values of e/a and q/a as indicated. They
appear to describe the FDM results reasonably well, at least su$ciently accurately for
practical purposes.

Experiments have been carried out with a"10mm, w"1mm, q"5mm, e"2mm and
d"13)75 mm. Results are plotted in Figure 14 with plus-symbols and appear to be in good
agreement with the proposed "t formula within the range shown in the diagram. Note that
some experimental results can be found in references [10, 11] which were veri"ed to "t with
the present results (see also reference [12]).

Application of the formulas in practical situations has to be done with care, since there
usually are deviations from the ideal situations for which the formulas are derived. For
example, in a wind instrument with side holes, the pad attached to the key is not perfectly
#at, and the key pivots around an axis, due to which it does not move along the hole axis.

9. CONCLUSION

The magnitude of the radiation impedance is important when modelling open tubes. The
present paper studies di!erent types of termination (#anges) and gives, for each type, "t
formulas (equations (41)}(52)). Some results are worth mentioning. For thin circular tubes
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(wall thickness less than a quarter of the radius) the length correction is larger than reported
in the literature [8, 9]. For circular #anges results show that the re#ection at the edges of the
#ange have a notable in#uence. A "t formula based on an estimate of this re#ection appears
to describe the results well. The so-called normalized #ange used for loudspeaker
characterization was measured and is shown to have a radiation impedance only 3% less
than the theoretical impedance for the in"nite #ange. It is shown that the zero frequency
formula for the circular #ange can be applied to the case of a square tube with a square
#ange by using the respective values for the un#anged and in"nitely #anged cases.

The methods used can in principle be applied to any other geometry although the writing
of a program for intricate 3-D geometries can be di$cult and the results can be inaccurate.
It is shown in this paper (see also reference [30]) that the method which approximates the
#ow "eld by pure radial #ow can give su$ciently good results, apart from a small systematic
deviation. Many numerical results were veri"ed with experiments. Agreement was
satisfactory for the imaginary part of the impedance (length correction) as well as for the
real part (losses).
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APPENDIX A: NOMENCLATURE

a tube radius, m
b #ange radius, m
c sound speed, m/s
d disk radius, m
e thickness of disk, m
f frequency Hz
g correction term for compensating low-frequency errors in BEM
G Green function
h grid size for "nite di!erence calculations (section 3.1)
h lift height of disk above hole, m
j J(!1)
k wave number"u/c, m
¸ length, position, m
p acoustic pressure, N/m2 or Pa
q radius of hole in disk, m
r radius, m
R re#ection coe$cient
R distance to boundary (section 3.1)
S cross-sectional area, m2
t temperature, 3C
; acoustic volume velocity"particle velocity times cross-section, m3/s
<
0

normal velocity
w wall thickness"b!a, m



534 J.-P. DALMONT E¹ A¸.
x position co-ordinate in tube, m
> acoustic admittance";/p, m4 s/kg
z length co-ordinate in cylinder, m
Z acoustic impedance"p/;, kg/m4 s
Z

c
characteristic acoustic impedance:oc/S, kg/m4 s

a wall damping in#uence factor
d end correction of a tube (low-frequency limit), m
dI frequency-dependent end correction of a tube, m
u angle
o density of air, kg/m3
u angular frequency"2nf s
X domain for the BEM (section 3.2)
C boundary of the domain X for the BEM (section 3.3)

Subscripts

r radiation
0 at abscissa 0
¸ at abscissa !¸

R in"nitely #anged
o un#anged
circ circular
cyl cylindrical #ange
disk with a disk above open end
e+ e!ective
H horn
nore- with no re#ection on the edge of the #ange
norm normalized
perf with a perforated disk above open end
sph spherical
sq square #ange on a square tube
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